If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x^2+32^2=x^2
We move all terms to the left:
0.5x^2+32^2-(x^2)=0
We add all the numbers together, and all the variables
-0.5x^2+1024=0
a = -0.5; b = 0; c = +1024;
Δ = b2-4ac
Δ = 02-4·(-0.5)·1024
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{2}}{2*-0.5}=\frac{0-32\sqrt{2}}{-1} =-\frac{32\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{2}}{2*-0.5}=\frac{0+32\sqrt{2}}{-1} =\frac{32\sqrt{2}}{-1} $
| 2(p+51)=9p | | 9p=p+51 | | 22=r-(-7) | | 672-3y+2y=126 | | 7y-12=6y-6 | | 12(x+8)=11 | | 12( | | 3(224-y)+2y=126 | | 125+.40x=213 | | 2(9p)=p+51 | | 2(u-11)=u+6 | | X=224-y | | 2r−9=1 | | -26=-7+n | | 2(p-28)=p+19 | | 2(4+×)=8+2x | | 11-v=22 | | 13=1-r+3r | | 13-3x=21 | | 2(s+60)=3s | | h3−2=–1 | | 11c+3=8c+30 | | -4.3+7x=13.2 | | h3− 2=–1h | | X+y=224 | | r-(14)=15 | | 2(y+32)=10y | | 5x/8-3=3x/12 | | p-30=9 | | p−30=9 | | 18=b+91 | | 2x-41/33=20/17 |